 Why Open vSwitch?
 =================

Hypervisors need the ability to bridge traffic between VMs and with the
outside world. On Linux-based hypervisors, this used to mean using the
built-in L2 switch (the Linux bridge), which is fast and reliable. So,
it is reasonable to ask why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server
virtualization deployments, a landscape for which the previous stack is
not well suited. These environments are often characterized by highly
dynamic end-points, the maintenance of logical abstractions, and
(sometimes) integration with or offloading to special purpose switching
hardware.

The following characteristics and design considerations help Open
vSwitch cope with the above requirements.

* The mobility of state: All network state associated with a network
 entity (say a virtual machine) should be easily identifiable and
 migratable between different hosts. This may include traditional
 "soft state" (such as an entry in an L2 learning table), L3 forwarding
 state, policy routing state, ACLs, QoS policy, monitoring
 configuration (e.g. NetFlow, IPFIX, sFlow), etc.

 Open vSwitch has support for both configuring and migrating both slow
 (configuration) and fast network state between instances. For
 example, if a VM migrates between end-hosts, it is possible to not
 only migrate associated configuration (SPAN rules, ACLs, QoS) but any
 live network state (including, for example, existing state which
 may be difficult to reconstruct). Further, Open vSwitch state is
 typed and backed by a real data-model allowing for the development of
 structured automation systems.

* Responding to network dynamics: Virtual environments are often
 characterized by high-rates of change. VMs coming and going, VMs
 moving backwards and forwards in time, changes to the logical network
 environments, and so forth.

 Open vSwitch supports a number of features that allow a network
 control system to respond and adapt as the environment changes.
 This includes simple accounting and visibility support such as
 NetFlow, IPFIX, and sFlow. But perhaps more useful, Open vSwitch
 supports a network state database (OVSDB) that supports remote
 triggers. Therefore, a piece of orchestration software can "watch"
 various aspects of the network and respond if/when they change.
 This is used heavily today, for example, to respond to and track VM
 migrations.

 Open vSwitch also supports OpenFlow as a method of exporting remote
 access to control traffic. There are a number of uses for this
 including global network discovery through inspection of discovery
 or link-state traffic (e.g. LLDP, CDP, OSPF, etc.).

* Maintenance of logical tags: Distributed virtual switches (such as
 VMware vDS and Cisco's Nexus 1000V) often maintain logical context
 within the network through appending or manipulating tags in network
 packets. This can be used to uniquely identify a VM (in a manner
 resistant to hardware spoofing), or to hold some other context that
 is only relevant in the logical domain. Much of the problem of
 building a distributed virtual switch is to efficiently and correctly
 manage these tags.

 Open vSwitch includes multiple methods for specifying and maintaining
 tagging rules, all of which are accessible to a remote process for
 orchestration. Further, in many cases these tagging rules are stored
 in an optimized form so they don't have to be coupled with a
 heavyweight network device. This allows, for example, thousands of
 tagging or address remapping rules to be configured, changed, and
 migrated.

 In a similar vein, Open vSwitch supports a GRE implementation that can
 handle thousands of simultaneous GRE tunnels and supports remote
 configuration for tunnel creation, configuration, and tear-down.
 This, for example, can be used to connect private VM networks in
 different data centers.

* Hardware integration: Open vSwitch's forwarding path (the in-kernel
 datapath) is designed to be amenable to "offloading" packet processing
 to hardware chipsets, whether housed in a classic hardware switch
 chassis or in an end-host NIC. This allows for the Open vSwitch
 control path to be able to both control a pure software
 implementation or a hardware switch.

 There are many ongoing efforts to port Open vSwitch to hardware
 chipsets. These include multiple merchant silicon chipsets (Broadcom
 and Marvell), as well as a number of vendor-specific platforms. (The
 PORTING file discusses how one would go about making such a port.)

 The advantage of hardware integration is not only performance within
 virtualized environments. If physical switches also expose the Open
 vSwitch control abstractions, both bare-metal and virtualized hosting
 environments can be managed using the same mechanism for automated
 network control.

In many ways, Open vSwitch targets a different point in the design space
than previous hypervisor networking stacks, focusing on the need for
automated and dynamic network control in large-scale Linux-based
virtualization environments.

The goal with Open vSwitch is to keep the in-kernel code as small as
possible (as is necessary for performance) and to re-use existing
subsystems when applicable (for example Open vSwitch uses the existing
QoS stack). As of Linux 3.3, Open vSwitch is included as a part of the
kernel and packaging for the userspace utilities are available on most
popular distributions.
